

Automation and Quality Assurance of the Production Cycle

 L Hajdu, L Didenko and J Lauret

Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

E-mail: lbhajdu@bnl.gov

Abstract. Processing datasets on the order of tens of terabytes is an onerous task, faced by

production coordinators everywhere. Users solicit data productions and, especially for

simulation data, the vast amount of parameters (and sometime incomplete requests) point at

the need for a tracking, control and archiving all requests made so a coordinated handling

could be made by the production team. With the advent of grid computing the parallel

processing power has increased but traceability has also become increasing problematic due to

the heterogeneous nature of Grids. Any one of a number of components may fail invalidating

the job or execution flow in various stages of completion and re-submission of a few of the

multitude of jobs (keeping the entire dataset production consistency) a difficult and tedious

process. From the definition of the workflow to its execution, there is a strong need for

validation, tracking, monitoring and reporting of problems. To ease the process of requesting

production workflow, STAR has implemented several components addressing the full

workflow consistency. A Web based online submission request module, implemented using

Drupal’s Content Management System API, enforces ahead that all parameters are described

in advance in a uniform fashion. Upon submission, all jobs are independently tracked and

(sometime experiment-specific) discrepancies are detected and recorded providing detailed

information on where/how/when the job failed. Aggregate information on success and failure

are also provided in near real-time.

1. Introduction

In High Energy and Nuclear Physics (HENP) experiments, the process of producing datasets follows

many steps, each of which need to be tracked and documented to ensure reproducibility and accuracy

of physics results. The STAR experiment (Solenoidal Tracker at the Relativistic Heavy Ion Collider)

[1] has a well-defined and increasingly automated procedure to handle the generation of Monte Carlo

datasets. The steps used in the simulation production process of figure 1 and STAR’s tools for

automating the process are described below.

In STAR, a dataset starts its existence as a request from a physics working group, which

parameterizes the physics they wish to study and the amount of data they will need in order to derive

results. These parameters are then approved by the physics working group convener (PWGC) who is

responsible for passing the request to the production coordinator. The production coordinator, in

collaboration with appropriate activity leaders (simulation or computing project leaders), tries to

merge similar requests, if feasible, by recommending common sets of parameters for the event

generation or the data reconstruction. When the request is finalized, the production coordinator

“contextualizes” the request. This involves selecting programs and program arguments and generating

scripts and job descriptions to produce the desired data. Most experiments have at least primitive

scripts with iterative methods to produce the required jobs from these requests and submit them to a

batch or resource management system, either Grid-based or local. After the output is recovered from

the batch system, it must be validated. Any detected failures will fall into one of two categories

external failures and internal failures. Causes of external failures can include defective batch nodes,

random crashes, network failures and so on. Jobs suffering run-time failures but which have passed

code quality pre-screening via regression test can typically be resubmitted without any modification to

the failed jobs. Some of the job configuration errors, in contrast, will lead to repeated failures if the

underlying configuration error is not corrected: causes can include scripting errors, and improper

physics parameters that lead to job crashes or meaningless results. The worst case scenario are human

errors in the parameters which would allow the jobs to run but produce un-usable results. Hence,

documenting and reproducibility are fundamental to our approach: before and after the dataset is

produced, the steps taken to produce them must be documented and the resulting files must be

cataloged. Completing the cycle, the physics working group is then informed that the request is

finished. Following through on multiple simultaneous requests can demand a lot of time from the

production coordinator and is prone to human error in many places. To reduce the burden and increase

the success rate of the production cycle, STAR has developed and implemented a suite of integrated

software tools for use throughout this process.

Figure 1. The STAR production’s life cycle and worflow.

2. Request description

There are many parameters to be specified for the jobs to be produced. Without some level of

automation much tedious back and forth communication may be required between the production

coordinator and the physics working group coordinator with no good away to track amendments to the

request. To improve the efficiency of the request process, a simulation/production request API was

developed using the Drupal [2] content management system as its framework.. Drupal is the main

content management system for STAR’s collaborative Web content. It is written in PHP, which is a

common language for web development, so developers are readily available. Only physics working

group conveners are allowed to request productions, which is enforced by Drupal’s ACL structure. As

the core Drupal code is well-designed, cyber security concerns are minimal. The web interface GUI

provides guidance to the requestors, while using logic to perform input validation, such as making

sure required fields are filled in and properly formatted. Users’ requests are written to a database and

are subsequently easily viewable online, easing the documentation burden for the production

coordinator and standardizing the documentation format. The web interface has comment fields

allowing the user to request unanticipated options. These fields are only human parse-able, so the

human element is still present if needed of course. The production coordinator uses this data to refine

and derive the request and converge toward a set of jobs to be submitted. Once submitted, the

production coordinator is the only one who can change the request, ensuring that no changes occur in

mid-production.

3. Contextualizing the request

The request is transformed by the production coordinator into a JDL (Job Description Language)

request which is understood by the STAR Unified Meta Scheduler (SUMS) [3]. This is a short XML

file that describes the jobs to be produced. Depending on the type of work the production coordinator

who is doing the XML can describe a number of identical jobs with different seeds, or something

more complex such as a type of job that encapsulates a subset of the dataset to be processed.

To assist the production coordinator, SUMS provides a multitude of environment variables that

provide convenient access to items such as unique seeds for random number generators, strings

common to all jobs in this request (but unique to any other request ever submitted), relative job IDs

within a request and more. Such variables are useful for creating folders storing data from

concurrently running jobs without fear of overwriting, running jobs in a highly parallel manner

without the risk of using the same event generator seed or accessing the relative job position within a

task.

Figure 2. A JDL to process a dataset with an input file list.

Figure 2 shows a simple SUMS JDL that will create jobs, each processing a few files from

MyDataset.txt where MyDataset.txt contains an ASCII line-delimited list of input files. SUMS will

reorder this list if requested (this example does not have this option) and split the file list into sub-file

lists with each list containing no more then maxFilesPerProcess and no less then

<?xml version="1.0" encoding="utf-8" ?>

<job filePerHour="3.2" maxFilesPerProcess="30" minFilesPerProcess="10">
<command>

command1 –agrs

command2 –agrs $JOBINDEX $FILELIST
</command>

<stdout URL="file:./$JOBID/$JOBINDEX.out" />
<stderr URL="file:./$JOBID/$JOBINDEX.err" />

 <input URL="filelist:./MyDataset.txt" />

 <sandBox>
 <package>

 <file>file:./myfiles/*</file>
 </package>
 </sandBox>

 <output fromScratch="*.out" toURL="$SUBMITTINGDIRECTORY"/>
</job>

minFilesPerProcess. The number of splits of the file list determines the number of jobs that

will be produced. Each job will have a pointer to its unique file list.

 The file descriptors can be Physical File Names (PFN) or Logical File Names (LFN). SUMS can

understand certain file naming schemes and has a mode that will group all files on the same node

together and request that the batch system send all jobs to the nodes on which these files reside (for

sites with a simple distributed storage model). Even in an xrootd [4] system, SUMS can declare a soft

preference for a particular node to possibly conserve network bandwidth. Such optimizations are

typically much too tedious to be attempted manually, but are natural for SUMS to apply transparently.

The SUMS JDL is the same format for independent user analysis at most STAR sites, such as

NERSC’s PDSF, Wayne State University and MIT. SUMS is deployed in the standard STAR

software stack and interfaces with most common batch systems such as LSF, SGE, Condor, X-Grid

[5] and the Condor-G grid interface.

4. Job feeder

When the request is provided to SUMS there is an option to dispatch jobs immediately or to create all

necessary files without dispatching them. In both cases a session file is produced that describes each

job so any job can be generated and dispatched or (re-dispatched if needed) at any time in the future.

Large production runs will use the option not to dispatch all jobs immediately. From this point a

specialized tool called “the feeder” is used to submit jobs. The feeder places limits on the number of

running and idle jobs in the batch processing system at any one time. Once it has reached its limits it

stops submitting and marks inside the session file all jobs that have already been submitted and waits

until the queue size is reduced before submitting more. The flowchart of the behavior of the feeder

can be seen in figure 3.

.

Figure 3. Flowchart of the job feeder.

The feeder will check the queue periodically. The feeder’s function is to keep the queue topped up.

It is most commonly configured to keep the queue at max occupancy, but other configurations exist

for fine tuning resource usage. This increases scalability for systems that need to keep track of many

jobs, and reduces recovery time from failures. The feeder can be stopped or started when the

production system is in a state that may cause jobs to be lost. The feeder could automatically detect

conditions leading to job losses. Such conditions includes “job black holes” that exist when a

resource failure occurs and for example, whenever a file system unexpectedly dismounts causing all

jobs to get sucked through the farm quickly without processing their payload or a node having all jobs

crash due to lack of memory or unstable system state. In this way the number of jobs exposed to the

failure is limited only to the jobs in the batch system at the time the error occurred. It is known, which

jobs have already finished and which jobs have not yet been submitted, so the range that has to be

examined, to determine where to resume submitting has been isolated, reducing recovery time. If the

batch processing system fails or a higher throughput resource becomes available, the feeder allows the

operator to change the target of the jobs, redirecting them to the higher throughput resource, without

resubmitting or having to check which were the last jobs submitted, because the feeder is keeping

track of this in the session file. This feature is particularly useful for lengthy stand-alone productions

(simulations, productions not requiring a tight association between computation and storage), because

the likelihood of resources failing (and thus requiring a redirect of pending jobs) over a large time

period is greater.

5. The job scanner

The feeder simply keeps track of jobs submitted. It cannot determine if the job was successfully

processed by the computing node. This responsibility falls to another tool in the toolbox called the job

scanner. The scanner’s function is to parse through all the output returned from the job, catalog the

data in a database and determine if each job succeeded or requires resubmission.

The scanner is pointed to the directory containing the submission files (e.g. condor submit files),

which are parsed. Once this is done the scanner knows how many jobs there are in this request, the

request ID, the indices of all jobs, the location of the standard output of the executable, the location of

the standard error log of the executable, and the executable script itself. These are all opened and

parsed. The scanner has a list of regular expression capture groups in its configuration file that it tries

to match. Inside the jobs’ output files, tags (mostly from echo statements) have been placed to report

job progress and diagnose failures. Tags have also been placed to print the location of the output file

(once it will be returned to the requesting site) and its MD5 checksums when the file(s) was on the

worker node. Once the output of these tags is parsed from the standard output, the location of the

output files on the requester’s side is known to the scanner. The scanner will attempt to locate the

files. They typically cannot be parsed by the scanner because its format is particular to the submitted

job, however the file sizes and MD5 checksums will be inspected by the scanner for comparison. All

of this information (the echo statement tags, the file MD5 checksums of all the input and output files

as they exist(ed) on both the requester’s side and the worker nodes’ side) are pushed into a database.

Pattern recognition is used to find known error states. For example, the error “segmentation violation”

in the output of a job which has previously passed all testing in a controlled environment (regression

testing before production) is a pattern known to indicate failure with good chance of success in a

second resubmission, even without any modification to the job. Such an error pattern can be the result

of emulating 32-bit operation on a 64-bit OS while using a single executable in a shared Grid

infrastructure, random hardware fault or corrupted input files. The scanner then marks each job as

failed or successful in its database and creates a list of all the jobs that have failed. The scanner cannot

check if the physics result is meaningful, only that the job was processed and that all files reached

their destinations without corruption. This level of quality assurance would be impractical for the

production coordinator to perform by hand across thousands of jobs, but the job scanner can run these

checks on one thousand jobs in an hour. Cases have even been found where SRM, thought to be one

of the most reliable transfer mechanisms, returned corrupted files through factors outside of its

control, such as a case when the SRM server crashed due to a lack of memory.

It should be noted that the STAR job scanner has both advantages and disadvantages when

compared to other user job monitoring tools. The main difference between the STAR job scanner and

the User Centric Job Monitor (UCM) [6] is that the STAR job scanner is not a real-time monitor.

Real- time monitors require one or more additional transfer mechanisms to stream information back to

a central location accessible from the submitter or error analyzer node. This imposes a real-time

requirement, which under heavy load may be subject to delays. Furthermore, analyzing the progress

may involve complex logic. The scanner on the contrary uses stream output recovery systems built

into the grid and all batch systems and (assuming the job is complete) the treatment of completion or

error is solely based on the presence of those output files (hence a simple logic). Real-time monitors

have other advantages though, such as being able to detect a job “frozen” at initialization because it

cannot copy in its input file. The job scanner would never recover the output stream for examination,

or would at least have to wait until the job dies in the queue, or until the run time becomes so long the

production coordinator is convinced there is something wrong.

The scanner’s database holds a large amount of data on each job which can be used to produce

statistics such as the success and failure rates (with or without multiple resubmissions of the job) and

transfer times from different sites. These may be rendered into static plots or dynamically rendered in

online web hosted graphs. Figure 4 is such a plot captured from the production coordinator’s web

page showing the percentage of jobs succeeding over time through various stages of job completion.

Figure 4. The job scanner’s output can be used to automatically generate plots showing

the percentage of jobs succeeding through various stages of job progression. The red

line is the overall success rate after no more than 4 resubmissions of all jobs.

6. Job resubmission

Once the job scanner has run and produced the list of failed jobs, the production coordinator can

examine the cause of the failures and resubmit. With large runs it can be practical to resubmit even

without checking the cause of every failure because many will run to completion with a second

submission without modification to the job or the environment. Figure 5 shows the total percentage of

successfully completed jobs for several datasets subject to multiple passes when needed.

When the scheduler (SUMS) produced the jobs, it created the session file containing all

information needed to regenerate and resubmit any job even if the original job description and

submission scripts were destroyed. If this file is passed back to SUMS, SUMS can resubmit a subset

of the jobs. The job scanner prints out the exact command with arguments required to resubmit the

jobs. The reason for not implementing a totally automated resubmission mechanism is because other

actions may need to be taken to allow the jobs to run to completion, such as remounting a drive, or

rebooting a gatekeeper. Without allowing for this action the jobs could circulate indefinitely being

resubmitted after each failure.

Figure 5. The percent of different productions successfully produced. In each pass the jobs in the

dataset where scanned and those jobs the scanner marked as bad where resubmitted, if time permitted.

7. Future directions

The Drupal based production request API is the newest tool in this suite developed to help automation

of the production system. It is also the component which has seen the least service. As different types

of simulation requests are submitted by the users, fields currently being entered in the comment boxes

may be given dedicated fields in the submission form to standardize them. To improve the submission

validity checks, more complex logic will be introduced as users provide test cases that may not be

adequately handled. The transformation from physics working group request to XML request will

remain a manual process, though the software should produce as much of a customized template as

possible for a given request type. (In much the same way a JAVA IDE might produce a class file with

an empty constructor method if you asked for a new JAVA class).

There has been a steady stream of changes and enhancements to SUMS since its inception over

seven years, as with any actively used and supported software. There are no upgrades slated that could

improve automation, however many changes are related to expansion of the request description

language to allow for the description of ever more complex jobs and work flows. The resubmission

features of the scheduler are considered stable and are not expected to change in the near future.

Future changes to the scanner software include identifying less common error states. Once the fault

is identified, a regular expression can be added to the configuration file to match the pattern of the

error. An intermediate failure recovery mode is also desirable. This would change the jobs’ workflow

so that jobs would buffer the output on the host site. Thus if the transfer back fails even though the job

has otherwise executed successfully, the transfer step alone may be retried, instead of running the

entire job from scratch, thereby reducing the load on computing resources.

Figure 6. Detailed overview of STAR’s simulation production tools.

An overview of how STAR’s simulation production tools fit together can be seen in figure 6.

STAR finds these tools useful and will continue to devote resources to improve them and share our

work and findings with the community if there is interest.

8. Summary

In the task of producing large simulated datasets time is always against the experimental production

manager. Reproducibility of results is also a key element essential to a good Physics throughput,

comparative research and back-tracing of problems if any. To utilize the available resources to their

utmost and assist the production coordinator in producing large simulated datasets, STAR has

developed a toolkit aiming to ease the daily work and simply the lifetime and cycle of production. It

consists of the Drupal API request submission interface, the SUMS scheduler with resubmission, the

job feeder, and the job scanner. The components cover for the requirements of traceability,

convenience, automation and reproducibility while preserving roles and responsibilities throughout

the production cycle. Especially, the Drupal API interface allows the physics working group to pass a

concise validated and self documenting request to the production coordinator. The production

coordinator contextualizes that request into a JDL request, which is passed to SUMS to produce jobs

and manage them. The jobs are then passed to the job feeder which submits as many jobs, from the

production, as the batch system can run at one time. Once the jobs have passed through the batch

system the job scanner can sort through the output and mark jobs for reprocessing that failed on the

first pass. These jobs are resubmitted by the job feeder and the full process is recorded in a back-end

database from the request to the result.

STAR has produced a production software suite to achieve this goal and have used the system in

routine production on both Cloud and Grid resources. STAR will continue to refine these tools to

extract ever higher efficiency from simulation production runs and make the task of production less

burdensome.

9. Acknowledgment

This work was supported by the HENP Divisions of the Office of Science of the U.S. DOE.

References

[1] C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 202301 (2002)

[2] http://drupal.org/

[3] L Hajdu, J. Lauret. Scheduler Configuration For Multi Site Resource Brokering CHEP06,

Computing for High Energy Physics, 2006.

[4] A. Hanushevsky, A. Dorigo, P. Elmer, and F. Furano. The next generation ROOT file server

 CHEP04, Computing for High Energy Physics CERN, 2004.

[5] L. Hajdu, A. Kocoloski, J. Lauret and M Miller 2008 J. Phys.: Conf. Ser. 119 072018

[6] D.A. Alexander, C. Li1, J. Lauret and V. Fine 2008 J. Phys.: Conf. Ser. 119 052001

